Derek Marston

Peter Susi

Digital Circuits I

12/15/00
Technical Report

Abstract:

Throughout the Digital Circuits I course, a computer has been designed that will play a game known as “Nim”. The computer was set up to play against a human, and beat him or her if it is possible to do so.

The circuit was designed using ABEL logic and a schematic editor and then downloaded into an FPGA programmable chip. The hardware was pre-constructed, and required no further modification.

Table of Contents:

Abstract

1

Introduction

2

Technical Details

2

Stack Logic

3

Timing and Control

3

Results

4

Conclusions

5

 Appendices:

Nim Computer Block Diagram

A1

Circuit Schematic

A2

STACK Part Schematic

A3

STACKDEC Part ABEL code

A4

CONTROL Part Schematic

A5

STMAC2 Part State Diagram

A6

NIM_LOGIC Part ABEL Code

A7

Constraint file

A8

Place and Route Report

A10
Introduction:

The game of Nim involves two players (one of which can be a computer) who alternately remove pieces from one of many stacks. There can be any number of stacks, and any number of pieces in each stack. (The design implemented in the lab used three stacks, each with up to seven pieces.) During each turn, a player takes as many pieces as he/she/it sees fit from any single stack, from one piece to all of the pieces. The winner is the player who takes the last piece.

For any given state of the game, the current player is either in a winning or losing position. If the player is winning, it is always possible to maintain that winning position. If the player is losing, winning is impossible unless the opposing player forfeits the winning position.

The winning position can be determined by hardware from the parity of the bits that define the number of pieces in each stack. If the binary bits that comprise the pieces in the stacks are grouped into first, second, and third bit groups, then a board is said to be in a “winning” position when any of these groups has odd parity. If the stacks can have more then 7 pieces, more bits are required, and more bit groups are needed.

To play the game with three stacks, hardware is required to handle each stack, as well as a control block. The control block consists of combinational logic to determine the computer’s move, and a sequential logic block to keep track of the current player, and perform the computer’s moves.

See Block Diagram p. A1

Technical Details: (See Appendix for Diagrams and Schematics)

Overall Schematic:

Each of the stack blocks outputted to an LED display and to the control block. The control block processed the stack inputs and the user inputs and created the computer’s output to a particular stack. The computer’s input to each stack was combined with the user input through an OR gate. All inputs had inverters because they were active low, and all input and output pins had buffers. The actual pin numbers were determined in the constraint file, “nim.ucf.” An OSC4 oscillator clocked the circuit at 490 Hz. The entire schematic was programmed and assembled using the Xilinx project manager, and it’s programming resources for the 4005XL chip.

Stack control and logic “STACK”:

Each stack block consisted of a counter and a decoder. The counter was a CB4CLED from the Xilinx library, which was clocked by the “select” input. It was set to count down one on each clock edge. The part could handle four bits, but only the lowest three were used. After the first working copy of our circuit was tested and saved, a modification was made such that it reset to full stacks instead of empty ones. In order to do this, the load function of the counter was utilized to load a binary “7” to increase the stacks to full. Two flip-flops were used to de-bounce and synchronize the select and “reset” input. Since the load function was synchronous, AND and OR gates were used to selectively clock the circuit when a “reset” input was received. Outputs were sent to both a binary representations via an LED block, and the decoder block.

Stack Decoder “STACKDEC”:

This block was created from ABEL code. It converted the binary output into the LED representation of our stack, where each LED represented one piece. There were three inputs, which were the binary representation of “x,” the number of pieces in the stack, and seven outputs that connected to the stack LED blocks on the board. Each output had a value from one to seven, and became true when “x” was greater than or equal to that value. Therefore the highest lit LED in the block would always have every LED below it also lit.

Timing and Control “CONTROL”:

The Control block consisted of two sub-circuits: the logic controlling the computer’s move, and the sequential state machine that controlled the current move. It had nine inputs that fed into the Nim Logic block, and “done” and “reset” inputs that went into the state machine. The “done” input was fed through a D flip-flop to be de-bounced and synchronized.

State machine “STMAC2”:

The state machine portion was designed on a graphical state transition editor. One state, “R” represented the reset state, waiting for the human player to make a move. Once the player pressed and released the “done” button, there were six possibilities. The computer decided which of the six to choose based on whether or not it was in a winning position, and which stack it would choose, both of which were determined by the Nim logic block. If it was in a winning state, it looped until the winning state no longer existed. If it was not in the winning state, it took only one piece. By looping until the winning state no longer existed, it avoided leaving the board in a winning position for it’s opponent.

Nim Logic “NIMLOGIC”:

The logic block was programmed with ABEL language. It had nine inputs, comprising the 3-bit binary outputs from the three stacks. The four outputs consisted of “W,” the winning state, and three “select” outputs, one for each stack. “W” became true when the game was in a winning state, and is determined by the parity of the bits for each stack. One of the three “select” outputs became true depending on which stack the computer picks. for it’s opponent. When in a winning state, The “select” functions determined which stack had the ability to change all the parities to even (a losing state). This way, the computer could leave the game in a losing state for its opponent, maintaining its own winning state. When the computer was in a losing state, it picked from a stack that had a leftmost bit true. This was an easy way of telling approximately which stack had the most pieces.

Results:

For each block, simulations were run to ensure proper functionality. The simulations were performed using the simulation tools provided in the software for the Xilinx 4005XL FPGA Chip. After successful simulations blocks were downloaded to the hardware, and tested again for correct behavior. After each block was assembled on the computer, the entire system was simulated and checked for each situation that the Nim logic block would have to handle, i.e. winning, losing, and picking from each stack. After successful simulation, the program was downloaded into the FPGA chip for further testing. The hardware testing included starting with any one stack, any pair of two stacks, and all three stacks. The hardware only functioned correctly after the reset button was pushed, because the initial state of the circuit’s flip-flops was unknown. The FPGA chip wound up utilizing 50 out of its 196 logic blocks, and 35 out of its 61 I/O pins.
Conclusion:

The final product was a one-player game of Nim, whereby the winner was the player taking the last piece. The reset button would initialize the board, setting all stacks to the full seven pieces. An improvement could be made by modifying the Nim logic such that the person taking the last piece would be the loser rather than the winner. This could be done without any hardware modification by simply changing the Nim logic. Other improvements could include adding labels to the buttons on the hardware, as well as an aesthetically pleasing enclosure.

PAGE
2

