Abstract

This report contains the technical details of the operation of our Token device, as well as a description of the hardware and software written to test the hardware. The card was designed standalone to conform with the specifications of the twisted-pair network of seven nodes from Senior Design I, all following the basic Token Ring protocol.

A User’s Manual is included to provide the end user with instructions of the card’s operation to exchange messages with other nodes. Following is a manufacturing note, societal implications and detailed use instructions for programming and implementing the Motorola 6812 microprocessor.

Table of Contents

Section
Page

Abstract

Table of contents
1

Introduction
2

Technical Details
3

Test Software, Hardware
5

User Manual
6

Manufacturability
8

Social Implications
8

Results
9

Conclusion
9

Appendices

Circuit Schematic
A

GAL .pld file
B

GAL .doc file
C

Final Program Code
D

6811 and 6812 Memory Maps
E

Cosmic C Compiler Instructions

F

P&E Software Review

G

Introduction

Over the course of 15 weeks, the operation and use of the 6812 processor were explored, and a successful Token ring network was created and tested. During these 15 weeks, the creation was broken up into steps to create and test the technology, which would allow for 16 bytes of data to be sent from one computer to another within the same network. The protocols used were identical to those used in the network nodes created last semester, so that this node could be used seamlessly within those networks. Today, this hardware can be easily set up to work on nearly any PC. This technical document will outline the development details and the associated documents.

The Token ring network transmits serial data using differential line drivers, and internal TTL voltage levels. The data is transmitted asynchronously on twisted pair cables. The token ring protocol involves passing a “token” of data from node to node in a circular path. The token is used to determine which node is allowed to transmit, and the status of the token determines if someone is already sending data through the network. This setup avoids collisions on the network, and organizes neatly when and what each node is allowed to transmit. The tradeoff is the lack of stability. Should any node fail, the entire network fails because the token will stop circulating.

Multiple hardware devices are used in the creation of this network setup. The Motorola 68HC12 Microcontroller is used to control data movement, process the tokens, and manage communications to the terminal. A serial data transceiver (USART) is used to communicate data from the microcontroller to other nodes serially. Various other hardware is used to realize the full network capabilities. A programmable GAL chip is used to implement extra logic needed to interface the 6812 to the USART. Line drivers are used to convert the TTL levels that the circuit uses to differential signals on the transmission lines, which are used instead of TTL to increase signal to noise ratios.

Technical Details

The token ring node met all specifications given last semester. While waiting for a token to arrive, the processor continually checks a flag to see if there is data ready to display. Any data coming from the keyboard would trigger an interrupt, and therefore does not require constant checking. The hardware used in conjunction with the processor included the 8251 USART chip and a programmable GAL for other logic and clock down stepping.

Contrary to last semester’s setup, which involved the GAL chip doing address decoding to activate and control the USART indirectly with the processor in extended mode, this semester’s setup did not use address decoding. Instead of memory mapping, the control and data lines were connected directly to the input/output ports of the processor. This simplified the hardware but increased the complexity of the software. Whenever the processor communicated with the USART, all four control signals (Read, Write, Command/!Data, and Reset) needed to be properly asserted with correct timing.

The GAL chip implemented a modulo-8 counter and inverters, for slowing down the processor clock and interfacing active-low signals, respectively. Power, ground, and all data lines were connected from the processor board with ribbon cables. The USART was connected to the ring via a pair of differential line driver chips to avoid ground loops in the network. Twisted pair was used both for the network lines and for connecting the processor clock signal to the rest of the hardware.

The keyboard interrupt interacts directly with the registers used by the processor to handle serial data. The serial communications interface (SCI) interrupt system is implemented for interfacing with HyperTerminal, since it is already included on-board RS232 conversion. When a new character is typed into HyperTerminal, the interrupt routine will place it in a buffer for later transmission. Two special keys are handled differently. First, the escape key will trigger the processor to send a free token. Secondly, the backspace key will decrement the buffer pointer to effectively remove the last character in the buffer. Neither of these keys is stored io the buffer. Once the keyboard buffer is filled, or enter is pressed, the buffered data will be copied into a separate buffer to be transmitted. A flag is then set to signify that data is ready to be sent. This avoids problems with overwriting buffer information when more data is entered before the current information is sent.

The display subroutine is called only when data is ready to be displayed in HyperTerminal (based on a system flag). The subroutine resets the flag, and prints the data on a new line of the screen. The data is stored before display in a separate buffer, and contains both the message and the transmitting node’s address.

Once a byte is received from the network by the USART chip, the processor is interrupted via the IRQ pin, and the token is transferred into a buffer from the USART, one byte at a time. The token is checked for proper format to ensure it has not been corrupted. A corrupted token is ignored as noise on the line. The processor will note the difference between a free and busy token, and react accordingly. When a free token is received, indicating that no data is being sent on the network, the node will send a busy token (message) if one is ready. Otherwise, a free token is echoed.

If a busy token is received, there are three options. If the data is for another node, the busy token is simply echoed directly from the received token buffer. If the data is for the receiving node or all nodes, the message is copied into the display buffer, the flag is set, and the busy token is echoed. In all cases, if the busy token originated from the receiving node, a free token is echoed instead of a busy token. This allows for messages to be sent to oneself, and confirmation that a busy token circulates completely around the ring.

Test Software and Hardware

Each time a new subroutine was created, it was tested individually with a specific program. These were slowly added into the final working code. This slow-but-steady progres led to a stable final product that had already been thoroughly tested at every level, requiring little testing of the final working product.

The token ring protocol specifications were taken from last semester. The goal was to make a product that would integrate seamlessly within a ring created with last semester’s project. These included specification change orders that were implemented last semester, which included USART software resetting and broadcast capabilities. It was also important to ensure that the same clock frequencies were used on the serial data hardware, so that all transmissions would be coherent among all nodes.

To accomplish this subroutine-level testing, the 6812 node was connected to a test node, which could send tokens manually. The test node would also display all incoming data from the node under test. For the token-ring software, incoming and outgoing communications were connected separately. Both free and busy token handling routines were tested fully by running every possible case and observing the outcome. These tests were identical to those performed during the creation of the 6811 token ring nodes last semester.

Final testing involved a three-node ring, which consisted of our node and two test nodes using 6811 hardware. Once the ring was assembled and all nodes were running, free token circulation was established and verified. This proved ring coherency and led to message sending tests. Each node was tested by sending messages to the other two nodes. This verified not only that our node worked properly, but also that it did not interfere with the operation of other nodes on the ring.

User Instructions

Token-Ring:

Once the token ring hardware is properly set-up and connected, the processor can be powered up. Since the program is stored in flash EEPROM, it does not need to be programmed every time. Once the program is launched all incoming messages will be displayed automatically, and sending messages is as simple as typing them in (see below).

Hardware Setup:

To set up a token-ring network, each node must be wired in a ring so that each node transmits to the next. Each node must connect it’s transmit output to the receive input of the node after it via twisted pair. Once the ring is complete, each node may be powered up.

Using the Software:

When each node is powered and connected, the software can be run to start the network. Execution begins at address D000h, so the command “PC D000” is used to set up the program counter. The “go” command will launch the code from the debugger window. After all nodes have started, a free token must be released to begin network functionality. Unless another node is allocated to this task, press Escape to release a free token. This function can be used to restart token circulation or debug problems. If a node freezes, reset the processor and restart.

Once the program is running, any incoming messages for a node are automatically printed to the screen. They will appear with the following format:

[image: image1.jpg]28 pin Plastic DIP

U

O

:U‘ < O O
= X g = =
%) ol

(e
(2]
s

RESET
CLK

XD

18] TXEMPTY
6] SYNDET/BD
5] TXRDY

=] [S] B R B =] & 3] =] (&

—

=y ey

Sending

[image: image2.jpg]DIP

E clock [|1 ~ 2 1] Vee
Al5 [| 1] Q2
Al4 Q1
Al13 E GAL iQO
16V8
Al12 []|5] usartIRQ
[15[] tmeIRQ
[1] tusartwr
mcRD |: :| tusartRD
mcE [] 1 tusartcs
GND [] 10 11] 10e

[image: image3.jpg]A W N =

g OO N @

Node

To send a message, first specify the recipient node. To do so, simply type the node address. Following this, any message up to 16 characters can be entered, followed by a return (enter). Once the 16-character limit is reached, the message is automatically sent. Any characters after the 16th become part of a new message, and need a new destination node, or they will not reach their target. To broadcast a message to ALL nodes on the network, use node address zero (0). An example is shown below:

In these examples, the node displayed is designated as node “@”. This is displayed in all messages received as the destination address. This can be ignored when reading the messages, and is used solely for debugging and testing, and can be used to differentiate between broadcast and direct messages.

Manufacturability

The circuit to be interfaced with the 6811 processor consists of the 8251 USART, two differential line drivers, and some basic logic (realized in a GAL). This could easily be realized on a printed circuit board, and connected to the microprocessor board via multiple header-pin connectors. The basic logic could be kept as a GAL chip, or realized with TTL logic. Connection issues have been found with ribbon connections into a breadboard. However, soldering the wires to a PCB will solve these problems.

To manufacture an entire node on a single card would not involve many changes to the system as a whole. Because the program is already run entirely from the flash EEPROM section of memory, and already handles the system overhead such as stack initialization. This is specified in the startup procedure, and makes the program self-contained. This is a considerable difference from last semester. The stack was not an issue when launching from the monitor program. In addition to the Token-ring hardware, the external interface to the processor would need to be included in the PC Board layout, increasing significantly both the level of complexity and the component count. Other basic layout problems, such as ground loops and clock skew, could become more evident. While the relatively simple interface circuit offered little possibility for these issues to become reality, a more complicated design would be open to more forms of interference and layout error. While a single-board design is still a possibility, the increased component count and design complexity would drive up both design time and final cost.

Societal Implications

Token ring protocol networks have both been commercially implemented in the past, and are readily available to consumers. Since a fully functional PC network card costs about ten dollars, our partially functional node does not break new ground on a technological or commercial level. Since we are not introducing new technology, innovation, or competition into society, any market or societal reactions will be negligible.

Results

The token ring node performed well under all test scenarios, both with a test node and a full ring. Oscilloscope observations showed that the data was being properly transmitted, with no extraneous noise introduced. The final program occupied bytes D000 – D2BE in flash EEPROM, totaling 702 bytes of code. In addition to this 14 bytes were used in RAM for pointers and flags, along with 4 buffers. At 21 bytes each, they bring RAM usage up to 98 bytes plus the size of the stack at any given point. Given that there is 1 Kb of RAM and 32Kb of Flash EEPROM, our node utilizes roughly 2.3% of on-chip memory.

Conclusions

Our final token ring network node successfully performed all required tasks, and passed all tests. The entire network performed acceptably, although there were not a significant number of nodes for message delay to become noticeable. With this in mind, it should be noted that reorganizing the program to move some routines outside of the interrupt routine would decrease network latency. However, given that the 6812 is clocked 4 times faster than the 6811, processing delay is a significantly smaller fraction of the bit width.

The use of C programming instead of assembly significantly sped up the development process. Once the hardware was properly set up, and low-level subroutines were created, top-level programming moved quickly. This would make it easy to advance this project further into a network monitor node or a hub system, building upon the single-node foundation.

>				Message

2@Hello 6812 Node

|

		 Cursor

>>					 Message sent to one node

4Mssg. For node 4

0Message for All

@0Message for All

0Message that is to long		 Broadcast Messages

@0Message that is

Broadcasts Received

To Port B

To CLK

To IRQ

To Port A

To Prior Node

To Next Node

Appendix A:

TOKEN RING

HARDWARE LAYOUT DIAGRAM

Eclock

A

B

GND

Vcc

Q4

Q3

Q2

Q1

Q0

!A

!B

!OE

GND

Vcc

PAGE
1

