Abstract

This report contains the technical details of the operation of our Token Ring and Ethernet devices, as well as a description of the hardware and software written to test the hardware. The card was designed on a twisted-pair network of seven nodes each with different software and hardware but all following the basic Token Ring and Ethernet protocols.

A User’s Manual is included to provide the end user with instructions of the card’s operation to exchange messages with other nodes. Following is a manufacturing note, societal implications, and list of change orders requested by the client, and either their inclusion or a proposal for future implementation.

Table of Contents

Section
Page

Abstract

Table of contents
1

Introduction
2

Technical Details
3

Test Software, Hardware
5

User Manual
7

Manufacturability
9

Change Orders
10

Social Implications
12

Results
13

Conclusion
14

Appendices

System Block Diagrams
A

Circuit Schematic
B

GAL .pld file
C

GAL .doc file
D

List Files
E

6811 Memory Map
F

List Files for test programs

G

Introduction:

Over the course of 15 weeks, a successful Token ring and Ethernet network was created and tested by 7 lab groups within the Digital Lab of what is now a figment of our memory, otherwise referred to as room 206 AHE. During these 15 weeks, the creation was broken up into steps to create and test the technology, which would allow for 16 bytes of data to be sent from one computer to another one within the same network. Today, this hardware can be easily set up to work on nearly any PC. This technical document will outline the development details and the associated documents.

The Token ring network, as well as the Ethernet network, transmits serial data using TTL logic voltage levels. The data is transmitted asynchronously on twisted pair cables. The main difference between the Token ring and Ethernet protocols is that in a token ring network, a free token needs to be passed around the network, and a node can only send a message when a free token is received. With the Ethernet configuration, a node can send a message at any time, because all of the nodes in a Token ring network are connected in series, while a bus that all nodes can access simultaneously connects the nodes in an Ethernet network.

There are multiple hardware devices used in the creation of this network setup. The Motorola 68HC11 Microcontroller is used to process the token. The USART is used to communicate between the user input on the PC and the microcontroller. Some other hardware is used to realize the network capabilities. The GAL chip is used to implement extra logic needed to interface the 6811 to the USART. The line driver is used to convert the TTL levels that the circuit uses with the differential signals on the transmission lines, which are used instead of TTL to reduce noise.

Technical Details

Token Ring

The Token Ring device sends asynchronous serial data across twisted pair in a ring formation connecting seven nodes. When no data is circulating, a “free token” consisting of three bytes, “AA FF AA,” is passed from one node to the next on the ring. If a node has data to send, the free token is replaced with a 21-byte busy token of the format “AA BB <source node number> <destination node number> <16-byte message ending in ‘Enter’> AA.” For instance, a message “Hello” from node 3 to node 1 would appear on the ring as “AA BB ‘3’ ‘1’ ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ 0D FF FF FF FF FF FF FF FF FF FF AA.” The FF bytes could be any character left over in the buffer. As long as they follow an ‘Enter’ which is ‘0D’ in hexadecimal ASCII code, the characters following the ‘0D’ are copied to the data buffer but are not displayed to the receiving node’s screen. The receiving end will display the message starting with the ‘BB’, which prints to the screen as a semicolon, up until the ‘0D’ or ‘Enter’. The message above would be displayed on the screen as follows: “;31Hello”

When a node receives a message, the data received is copied into a buffer called DATABUFF where it can be processed. The node checks the message as it arrives to see that it contains valid data, meaning that there is a leading and tailing AA showing that it is a complete message. It also checks if it is a busy token or a free token. If it is a free token and the node has no information to send, the free token is passed on to the next node. If the node does have information to send, instead of re-transmitting the free token, it will generate a busy token from that message and send that instead. In contrast, if the incoming message is a busy token and the message destination number matches our node number, then the processor will display the buffer onto the screen as explained earlier. If the destination number does not match ours, the message is not displayed to the screen. In either case, the busy token is transmitted to the next node of the network.

The message is corrupt if the second byte is not “FF” as in a free token, or “BB” as in a busy token. The current version of our token ring does not have the capabilities to handle corrupt tokens, so the node will lock up thus crashing the network. In the token ring setup, this device has not been tested for that situation.

When there is data to send and a free token is received, the node then has the ability to send the data. The data originates from the user inputting information from the keyboard as described in the user manual. If there is not a free token being received, the data will stay in the buffer until there is a free token as the protocol dictates. If there is more data entered into the keyboard then it overwrites the old message.

Ethernet:

The Ethernet packet follows the same format as the busy token used in the token ring protocol. The Ethernet card connects to one common line shared by all nodes. All nodes therefore listen to every message as they are sent. There is no longer a necessity to wait for free token or retransmit busy tokens. Because of this, if there is a message to send, it can be sent immediately. When a given node detects a message with the destination address that is the same as its own node number, the message will be displayed and never retransmitted. If the destination address of the message does not match the address of the receiving node, then that node ignores the message.

Test Software, Hardware

Hardware:

A Motorola 68HC11 microprocessor interfaces the PC to the network. The software for the 6811 is downloaded via HyperTerminal. The processor communicates with a memory-mapped 8251A USART chip to convert parallel data into the asynchronous serial data used by the network via a 16V8 GAL chip that implements all of the extra logic functions required for the interfacing of the 8611 to the USART. The USART transmits the asynchronous serial data through two SN75176A differential line driver chips for Token Ring, or only one in the case of Ethernet. LEDs provide the status of the Transmit Ready and Receive Ready pins on the USART, and all of these are connected on a breadboard with jumper wires.

A test node connected to a laptop computer provides testing so that the entire network does not have to be operational all at once, and allows for tracing an error or bug much more efficiently since it prints every character it receives without processing out extra information not used by regular nodes.

To effectively test the final program, each subroutine is tested as it is developed. LED’s provided the necessary information to test the subroutines for receiving and transmitting one byte. The software for handling free tokens is tested in two ways. The test node is able to display the received information ensuring that the correct information is received. The oscilloscope is also used in a similar fashion. The trace of the binary data can be traced by attaching the oscilloscope such that the TTL level of the data can be detected. By inspection of the waveform, the information can be interpreted to analyze if the correct data is sent.

Software:

While each subroutine was tested individually, several separate files were created for the sole purpose of testing the entire system or measuring performance.

The first files to prove basic functionality, goal5.asm and goal6.asm, contained the subroutines TransmitA and Receive, respectively. These would show that one byte could be sent and received, therefore proving that the USART was properly configured and that the hardware was set up correctly for sending and receiving data.

The next important file, testInr.asm, demonstrated that the interrupt system correctly interrupted what the processor was doing so it could (in later programs) process the incoming data.

The next step was to handle entire tokens. Recfree.asm received a free token, later expanded to recbusy.asm and recbusy2.asm which received busy tokens also. Echofree.asm was used to circulate a free token around the ring as the first sign of the entire ring working together.

After the creation of subroutines to handle input and output, more files tested certain network load conditions, such as procbusy.asm and alwaysBusyEEPROM.asm to test if one computer always had data to send. This file provided the information to measure the data rate.

The final test subroutine was simply included in our final Ethernet program, Ethernet.asm and EEPROMether.asm since it had no visible effect during normal operation whatsoever. The subroutine counted collisions to prove that the collisions were what crashed the program, since the collision count never exceeded one. This collision count was stored in a one-byte buffer that could be read any time the program was not running.

User’s Manual:

Initialization:

Before operating this card, the user must download the code to the 6811 in a terminal program such as “Hyperterminal,” which is included with Microsoft Windows™. Both the EEPROM section and the RAM section are required at this time. A manufactured version will only require downloading to EEPROM once, if the device is only used for this purpose. Once the code is downloaded, type “go 100” (or for the later version, “go B600”) then the program will be running and messages can be exchanged.

Sending Messages:

To send a message, first type the address of the node to which you would like to send your message. Then type your message making sure that it does not exceed 15 characters. When the message is complete, press Enter. Your message should be displayed on that node's screen.

An example of what a message looks like: "4Hello node 4!"

Our node does not accept file transfers or large Copy-Paste blocks of text. Please limit messages to typed messages of no longer than 15 characters.

Receiving Messages:

To receive a message, look at the monitor. Any incoming message addressed to your node or broadcast to all nodes will appear on the screen as soon as it arrives. The format of an incoming message is a semicolon, the address of the node sending you the message, the address of your node, then the message.

For example, ";53Good Afternoon!" might appear on your screen. This message is from node 5 to you.

If you receive a message while composing one, it will print where the cursor is on the screen. This may cause your typed message to look incomplete or corrupt, but the incoming message has no effect on the typed message.

Troubleshooting Tips:

The receiving node does not receive my messages, but I can receive from them.
Make sure you remember to type their node address before the message

My message is getting cut off
Messages are only supported up to 15 characters. Messages longer than that will be truncated to 15 characters.

My PC cannot communicate with the card

Ensure that there is power to the card, and that it is plugged into the PC.

Manufacturability:

When planning to convert this design to a printed circuit board, there are many issues to consider. In the printed circuit, the cuts on the boards representing wires should be designed to handle the current through the components of the circuit. However, most of our wires handle TTL level digital logic signals to gates, so the currents are small enough so that this should not pose a problem. For the communication between the board and the computer and the rest of the nodes, the resistance should be matched to the wires so that there are minimal reflection currents. We also need to be concerned with crosstalk issues, especially because a printed circuit board cannot use twisted-pair for the clock and power.

Before using the manufactured board, all of the software should be moved into EEPROM and set up to run from there so the program does not need to be reloaded every time.

These design decisions can impact the cost and manufacturing time. To maximize productivity and minimize cost, the ideal printed circuit board would be one sided so that it can be cut and assembled quickly.

Change Orders:

Change Order 3:

Verify that the USART can actually send and receive one Byte of data:

How to perform the test:

Implement hardware changes: Two multiplexers to swap our transmit and receive data lines to feed back upon themselves if the multiplexer input is high. This would let us transmit one byte (stored in the USART’s buffer, remember) and then receive that same byte. Also one LED would be required if the user wants hardware response. Otherwise the user could know if it works through software, but that is less reliable.

Software changes would involve setting the multiplexers on, transmitting one byte, discarding the byte, then resetting the multiplexers and the USART for standard operation.

How to alert the user to the test results:

An LED on the external part of the card can alert the user that a test has been completed successfully by lighting up green, or unsuccessfully by lighting up red.

Change Order 4:

Sending longer messages while still using 21 bytes for busy token (max 45)

To send send longer messages, we can change the leading bytes of the busy token to something like AAB0 instead of AABB. This way we can check to see if there is more then one 21-byte long message that needs to be sent. This would set a flag and once the whole message is sent, then we would reset the flag. The other change that needs to take place is the increased buffer sizes. The keyboard buffer needs to increase in size to accept the whole message. When transmitting the second half of the message, the program needs to make sure it starts where it left off. It can keep track of this with a “moreData” flag. If the “moreData” flag is set, then we know that we need to start with the second half of the data.

Change Order 5:

Cyclic Redundancy Check, or checksum, is a powerful but easily implemented type of hash function to detect corrupt data. A CRC checker will generate an extra set of bits called a Frame Check Sequence (FCS) which contains redundant information about the raw frame data. The receiver will generate its own FCS from the raw data, then compare it to the transmitted one to see if there is an error. It can be implemented in hardware by a series of shift registers and adders (XOR gates). It can also be implemented in software, by replacing the shift registers with variables and the XOR gates with an XOR function. This takes up very little space and processing power, but it is also much slower than the hardware equivalent.

Social Implications:

The token ring card created by Derek Marston and Kristin Kelly can dramatically affect the everyday lives of millions around the world. Because of the state of the art software and hardware design, communication between multiple computers is improved from conventional letters and Morse code. Computers can now write a message with a keyboard and have it instantaneously transmitted over twisted pair transmission lines. This capability will improve business and personal life everywhere. The main advantage to this software is the capability to send messages to every computer on the network

The fabrication of this token ring card also excels with respect to other products on the market. There have been stories mentioned about hazardous waste leaking from other manufacturer’s plants into drinking water and national wildlife reserves all around the country. This design is assembled in facilities that avoid hazardous waste that will affect the community and wildlife.

Nothing can produce only positive effects on society. A potential negative effect from the ability to communicate in this fashion is the unethical use of the network. Messages can now be spread to multiple users in a short duration of time. Because of this, users could make threats, use profanity, or harass others on the network. Sending child pornography or other inappropriate material could abuse future versions that allow files such as pictures and videos.

Results:

 The final working version of the token ring network circulates a free token at 14 milliseconds for a full transmission around the ring. When there is one node always sending, the transmission time is 162 milliseconds. Finally, when there are all nodes always transmitting, the circulation time is 1124 milliseconds. The token ring network allows for seven nodes to send messages to one another with the capability of sending a message to all nodes with one transmission attempt through the broadcast capabilities.

The final Ethernet network allows for all seven nodes to communicate with each other using one bus. All nodes have access to all messages at the same time. Each node detects every message on the line and coordinates the proper behavior based on the destination address. The time for a message to “circulate” is the time for a message to be transmitted, which is 13.4 ms.

Conclusion:

The design process and functionality of the Token Ring as well as the Ethernet cards continue to prove to be successful through a series of tests. While the Ethernet network functions at a faster bit rate then the token ring network, its design does not allow for collisions, or multiple nodes attempting to send a message at the same time. The Token Ring network is designed so that it can never have a collision. The two previously mentioned contrasting ideas about the networks are the main tradeoffs one should consider prior to utilizing either.

There are several ways that this design can be improved, some of which are mentioned in the change orders section. There can be a “Self-Test” feature where an LED is used to indicate that the USART can actually send and receive one byte of data. The message length could also be lengthened within the memory limit of the 6811 memory space. If the customer asked for longer messages and files to be sent that exceeds the limit of the current microcontroller capacity, another microcontroller with a larger memory allocation can be chosen and utilized. For files to be sent instead of the current capability of short text messages, software changes will need to occur to save the functionality of the file in the memory location and to be able to access the file from the PC. Other changes can be implemented in future versions such as Cyclic Redundancy Checks and the ability to send with Synchronous Serial Transmission.

PAGE
6

